Everything is a tradeoff

Souheil Inati FMRI Course July 1, 2011

Interrupt early and often.

Nothing is free

fast, good, cheap ... chose two

The Hardware

Magnet and Gradients

Magnet

- field strength
- bore size
- length/weight
- self-shielded
- homogeneity/shims
- helium boiloff

\$1,000,000/Tesla

Gradients

- size (head/body)
- strength
- slew rate
- duty cycle
- linearity
- eddy currents
- water cooling
- vibration/acoustics

RF Coils

- Receive coil
 - size/shape/coverage
 - element # and arrangement
 - mechanical design/robustness
- Transmit coil
 - head/body Tx
 - multi-channel Tx

3T 32 channel head Rx array \$80k

FDA Approval, warrantee and service

Surface Coils vs Volume Coils

Tradeoff uniformity for increased SNR locally

Amplifiers

- Lots of Amps
 - Shims
 - Gradients
 - RF Transmit
 - RF Receive

- Issues
 - gain
 - noise figure
 - stability
 - duty cycle

Tradeoffs - each optimized differently

Digitizers, computers

- Digital to Analog
 - Gradients, RF waveforms
- Analog to Digital
 - RF Receiver
 - Physiology monitors
 - Sensors (Temp, Flow)
- Computers
 - sequencer, embedded monitors, recon engine

- Optimization Criteria
 - Dynamic range
 - Fidelity (Accuracy)
 - Speed
 - Hardware architecture
 - CPU speed, RAM
 - Software architecture
 - real-time, parallel

Ancillary equipment

- Projectors
 - resolution, color, speed
 - lens system optics throw, image size
- Interface devices
 - mechanical design/robustness
 - ease of use with stimulus programs
- Physiological monitoring
- Eye-tracking, EMG, EEG, ...
- FDA Approval, warrantee and service

SPEED KILLS

speed vs image artifacts
speed vs coverage
speed vs resolution
speed vs signal to noise ratio

Hardware Matters

I mm, 10 min 3T, Volume Coil

0.7 mm, 10 min 7T, Rcv Array

Attainable SNR, CNR, resolution, speed depend on hardware

Speed vs Image Artifacts

I mm, 10 min

3 mm, 2 s

See Vinai's lecture next week.

Speed vs Coverage

Increasing number of slices costs time

Speed vs Resolution

Image

k-space

Speed vs Resolution

Speed vs Resolution

Increasing number of pixels costs time

The k number:

$$k_{x} \equiv \gamma \int_{0}^{t} G_{x}(\tau) d\tau$$

Signals and Noises

- Signal amplitude depends on many things
 - Acquisition parameters
 - Tissue properties (T1,T2)
 - Hardware, e.g. field strength, coil sensitivity
- Noise amplitude depends on many things
 - electrical: coils, receivers, amps
 - mechanical: vibration
 - physiological: respiration, subject motion, cognitive

Simple model of noise

Additive

$$d(j) = s(j) + n(j)$$

Independent

noise at j is independent of noise at other times

Normally distributed

drawn from a normal distribution with 0 mean

Simple model of noise

Normal distribution (Gaussian)

FMRI Course, July 1, 2011

Simple model of noise

- If noise is sum of many Gaussian noise sources then total noise is also Gaussian - variances add
- If the number of measurements becomes large, the noise distribution looks Gaussian
- If noise is not Gaussian, then often a transformed version of the data is

Thinking about additive Gaussian noise gets us almost all the intuition we need

Speed vs Accuracy

- If noise is Gaussian accuracy improves as I/sqrt(N)
- This applies to almost everything in MR
 - time, resolution, coverage, etc.
- Except for the physiological stuff and the other stuff that is not Gaussian

MATLAB Demo